Ever since the browser frontend switcher was introduced in
de64c6c54a /akkoma counts as
an API prefix and thus gets skipped by frontend plugs
breaking the old swagger ui path of /akkoma/swagger-ui.
Do the simple thing and change the frontend path to
/pleroma/swaggerui which isn't an API path and can't collide
with frontend user paths given pleroma is areserved nickname.
Reported in
https://meta.akkoma.dev/t/view-all-endpoints/269/7https://meta.akkoma.dev/t/swagger-ui-not-loading/728
Usually an id should point to another AP object
and the image file isn’t an AP object. We currently
do not provide standalone AP objects for emoji and
don't keep track of remote emoji at all.
Thus just federate them as anonymous objects,
i.e. objects only existing within a parent context
and using an explicit null id.
IceShrimp.NET previously adopted anonymous objects
for remote emoji without any apparent issues. See:
333611f65e
Fixes: https://akkoma.dev/AkkomaGang/akkoma/issues/694
We’ve received reports of some specific instances slowly accumulating
more and more binary data over time up to OOMs and globally setting
ERL_FULLSWEEP_AFTER=0 has proven to be an effective countermeasure.
However, this incurs increased cpu perf costs everywhere and is
thus not suitable to apply out of the box.
Apparently long-lived Phoenix websocket processes are known to
often cause exactly this by getting into a state unfavourable
for the garbage collector.
Therefore it seems likely affected instances are using timeline
streaming and do so in just the right way to trigger this. We
can tune the garbage collector just for websocket processes
and use a more lenient value of 20 to keep the added perf cost
in check.
Testing on one affected instance appears to confirm this theory
Ref.:
https://www.erlang.org/doc/man/erlang#ghlink-process_flag-2-idp226https://blog.guzman.codes/using-phoenix-channels-high-memory-usage-save-money-with-erlfullsweepafterhttps://git.pleroma.social/pleroma/pleroma/-/merge_requests/4060
Tested-by: bjo
Websites are increasingly getting more bloated with tricks like inlining content (e.g., CNN.com) which puts pages at or above 5MB. This value may still be too low.
Rich Media parsing was previously handled on-demand with a 2 second HTTP request timeout and retained only in Cachex. Every time a Pleroma instance is restarted it will have to request and parse the data for each status with a URL detected. When fetching a batch of statuses they were processed in parallel to attempt to keep the maximum latency at 2 seconds, but often resulted in a timeline appearing to hang during loading due to a URL that could not be successfully reached. URLs which had images links that expire (Amazon AWS) were parsed and inserted with a TTL to ensure the image link would not break.
Rich Media data is now cached in the database and fetched asynchronously. Cachex is used as a read-through cache. When the data becomes available we stream an update to the clients. If the result is returned quickly the experience is almost seamless. Activities were already processed for their Rich Media data during ingestion to warm the cache, so users should not normally encounter the asynchronous loading of the Rich Media data.
Implementation notes:
- The async worker is a Task with a globally unique process name to prevent duplicate processing of the same URL
- The Task will attempt to fetch the data 3 times with increasing sleep time between attempts
- The HTTP request obeys the default HTTP request timeout value instead of 2 seconds
- URLs that cannot be successfully parsed due to an unexpected error receives a negative cache entry for 15 minutes
- URLs that fail with an expected error will receive a negative cache with no TTL
- Activities that have no detected URLs insert a nil value in the Cachex :scrubber_cache so we do not repeat parsing the object content with Floki every time the activity is rendered
- Expiring image URLs are handled with an Oban job
- There is no automatic cleanup of the Rich Media data in the database, but it is safe to delete at any time
- The post draft/preview feature makes the URL processing synchronous so the rendered post preview will have an accurate rendering
Overall performance of timelines and creating new posts which contain URLs is greatly improved.
Trying to display non-media as media crashed the renderer,
but when posting a status with a valid, non-media object id
the post was still created, but then crashed e.g. timeline rendering.
It also crashed C2S inbox reads, so this could not be used to leak
private posts.
In Mastodon media can only be used by owners and only be associated with
a single post. We currently allow media to be associated with several
posts and until now did not limit their usage in posts to media owners.
However, media update and GET lookup was already limited to owners.
(In accordance with allowing media reuse, we also still allow GET
lookups of media already used in a post unlike Mastodon)
Allowing reuse isn’t problematic per se, but allowing use by non-owners
can be problematic if media ids of private-scoped posts can be guessed
since creating a new post with this media id will reveal the uploaded
file content and alt text.
Given media ids are currently just part of a sequentieal series shared
with some other objects, guessing media ids is with some persistence
indeed feasible.
E.g. sampline some public media ids from a real-world
instance with 112 total and 61 monthly-active users:
17.465.096 at t0
17.472.673 at t1 = t0 + 4h
17.473.248 at t2 = t1 + 20min
This gives about 30 new ids per minute of which most won't be
local media but remote and local posts, poll answers etc.
Assuming the default ratelimit of 15 post actions per 10s, scraping all
media for the 4h interval takes about 84 minutes and scraping the 20min
range mere 6.3 minutes. (Until the preceding commit, post updates were
not rate limited at all, allowing even faster scraping.)
If an attacker can infer (e.g. via reply to a follower-only post not
accessbile to the attacker) some sensitive information was uploaded
during a specific time interval and has some pointers regarding the
nature of the information, identifying the specific upload out of all
scraped media for this timerange is not impossible.
Thus restrict media usage to owners.
Checking ownership just in ActivitDraft would already be sufficient,
since when a scheduled status actually gets posted it goes through
ActivityDraft again, but would erroneously return a success status
when scheduling an illegal post.
Independently discovered and fixed by mint in Pleroma
1afde067b1
In MastoAPI media descriptions are updated via the
media update API not upon post creation or post update.
This functionality was originally added about 6 years ago in
ba93396649 which was part of
https://git.pleroma.social/pleroma/pleroma/-/merge_requests/626 and
https://git.pleroma.social/pleroma/pleroma-fe/-/merge_requests/450.
They introduced image descriptions to the front- and backend,
but predate adoption of Mastodon API.
For a while adding an `descriptions` array on post creation might have
continued to work as an undocumented Pleroma extension to Masto API, but
at latest when OpenAPI specs were added for those endpoints four years
ago in 7803a85d2c, these codepaths ceased
to be used. The API specs don’t list a `descriptions` parameter and
any unknown parameters are stripped out.
The attachments_from_ids function is only called from
ScheduledActivity and ActivityDraft.create with the latter
only being called by CommonAPI.{post,update} whihc in turn
are only called from ScheduledActivity again, MastoAPI controller
and without any attachment or description parameter WelcomeMessage.
Therefore no codepath can contain a descriptions parameter.
Due to JSON-LD compaction the full address of public scope
may also occur in shorter forms and the spec requires us to treat them
all equivalently. To save us the pain of repeatedly checking for all
variants internally, normalise inbound data to just one form.
See note at: https://www.w3.org/TR/activitypub/#public-addressing
This needs to happen very early, even before the other addressing fixes
else an earlier validator will reject the object. This in turn required
to move the list-tpye normalisation earlier as well, but since I was
unsure about putting empty lists into the data when no such field
existed before, I excluded this case and thus the later fixing had to be
kept as well.
Fixes: https://akkoma.dev/AkkomaGang/akkoma/issues/670
literally nothing uses C2S AP, and it's another route into core
systems which requires analysis and maintenance. A second API
is just extra surface for potentially bad things so let's take
it out back and obliterate it
We were overzealous with matching on a raw error from the object fetch that should have never been relied on like this. If we can't fetch successfully we should assume that the collection is private.
Building a more expressive and universal error struct to match on may be something to consider.
"id" is used for the canonical link to the AS2 representation of an object.
"url" is typically used for the canonical link to the HTTP representation.
It is what we use, for example, when following the "external source" link
in the frontend. However, it's not the link we include in the post contents
for quote posts.
Using URL instead means we include a more user-friendly URL for Mastodon,
and a working (in the browser) URL for Threads
previously we would uncritically take data and format it into
tags for static-fe and the like - however, instances can be
configured to disallow unauthenticated access to these resources.
this means that OG tags as a vector for information leakage.
_technically_ this should only occur if you have both
restrict_unauthenticated *AND* you run static-fe, which makes no
sense since static-fe is for unauthenticated people in particular,
but hey ho.
Per the XRD specification:
> 2.4. Element <Alias>
>
> The <Alias> element contains a URI value that is an additional
> identifier for the resource described by the XRD. This value
> MUST be an absolute URI. The <Alias> element does not identify
> additional resources the XRD is describing, **but rather provides
> additional identifiers for the same resource.**
(http://docs.oasis-open.org/xri/xrd/v1.0/os/xrd-1.0-os.html#element.alias, emphasis mine)
In other words, the alias list is expected to link to things which are
not just semantically the same, but exactly the same. Old user accounts
don't do that
This change should not pose a compatibility issue: Mastodon does not
list old accounts here (See e1fcb02867/app/serializers/webfinger_serializer.rb (L12))
The use of as:alsoKnownAs is also not quite semantically right here
(see https://www.w3.org/TR/did-core/#dfn-alsoknownas, which defines
it to be used to refer to identifiers which are interchangable) but
that's what DID get for reusing a property definition that Mastodon
already squatted long before they got to it
Since we always followed redirects (and until recently allowed fuzzy id
matches), the ap_id of the received object might differ from the iniital
fetch url. This lead to us mistakenly trying to insert a new user with
the same nickname, ap_id, etc as an existing user (which will fail due
to uniqueness constraints) instead of updating the existing one.
In order to properly process incoming notes we need
to be able to map the key id back to an actor.
Also, check collections actually belong to the same server.
Key ids of Hubzilla and Bridgy samples were updated to what
modern versions of those output. If anything still uses the
old format, we would not be able to verify their posts anyway.
To save on bandwith and avoid OOMs with large files.
Ofc, this relies on the remote server
(a) sending a content-length header and
(b) being honest about the size.
Common fedi servers seem to provide the header and (b) at least raises
the required privilege of an malicious actor to a server infrastructure
admin of an explicitly allowed host.
A more complete defense which still works when faced with
a malicious server requires changes in upstream Finch;
see https://github.com/sneako/finch/issues/224
Certain attacks rely on predictable paths for their payloads.
If we weren’t so overly lax in our (id, URL) check, the current
counterfeit activity exploit would be one of those.
It seems plausible for future attacks to hinge on
or being made easier by predictable paths too.
In general, letting remote actors place arbitrary data at
a path within our domain of their choosing (sans prefix)
just doesn’t seem like a good idea.
Using fully random filenames would have worked as well, but this
is less friendly for admins checking emoji dirs.
The generated suffix should still be more than enough;
an attacker needs on average 140 trillion attempts to
correctly guess the final path.
This will decouple filenames from shortcodes and
allow more image formats to work instead of only
those included in the auto-load glob. (Albeit we
still saved other formats to disk, wasting space)
Furthermore, this will allow us to make
final URL paths infeasible to predict.
Since 3 commits ago we restrict shortcodes to a subset of
the POSIX Portable Filename Character Set, therefore
this can never have a directory component.
E.g. *key’s emoji URLs typically don’t have file extensions, but
until now we just slapped ".png" at its end hoping for the best.
Furthermore, this gives us a chance to actually reject non-images,
which before was not feasible exatly due to those extension-less URLs
As suggested in b387f4a1c1, only steal
emoji with alphanumerc, dash, or underscore characters.
Also consolidate all validation logic into a single function.
===
Taken from akkoma#703 with cosmetic tweaks
This matches our existing validation logic from Pleroma.Emoji,
and apart from excluding the dot also POSIX’s Portable Filename
Character Set making it always safe for use in filenames.
Mastodon is even stricter also disallowing U+002D HYPEN-MINUS
and requiring at least two characters.
Given both we and Mastodon reject shortcodes excluded
by this anyway, this doesn’t seem like a loss.
Even more than with user uploads, a same-domain proxy setup bears
significant security risks due to serving untrusted content under
the main domain space.
A risky setup like that should never be the default.
Else malicious emoji packs or our EmojiStealer MRF can
put payloads into the same domain as the instance itself.
Sanitising the content type should prevent proper clients
from acting on any potential payload.
Note, this does not affect the default emoji shipped with Akkoma
as they are handled by another plug. However, those are fully trusted
and thus not in needed of sanitisation.
The lack thereof enables spoofing ActivityPub objects.
A malicious user could upload fake activities as attachments
and (if having access to remote search) trick local and remote
fedi instances into fetching and processing it as a valid object.
If uploads are hosted on the same domain as the instance itself,
it is possible for anyone with upload access to impersonate(!)
other users of the same instance.
If uploads are exclusively hosted on a different domain, even the most
basic check of domain of the object id and fetch url matching should
prevent impersonation. However, it may still be possible to trick
servers into accepting bogus users on the upload (sub)domain and bogus
notes attributed to such users.
Instances which later migrated to a different domain and have a
permissive redirect rule in place can still be vulnerable.
If — like Akkoma — the fetching server is overly permissive with
redirects, impersonation still works.
This was possible because Plug.Static also uses our custom
MIME type mappings used for actually authentic AP objects.
Provided external storage providers don’t somehow return ActivityStream
Content-Types on their own, instances using those are also safe against
their users being spoofed via uploads.
Akkoma instances using the OnlyMedia upload filter
cannot be exploited as a vector in this way — IF the
fetching server validates the Content-Type of
fetched objects (Akkoma itself does this already).
However, restricting uploads to only multimedia files may be a bit too
heavy-handed. Instead this commit will restrict the returned
Content-Type headers for user uploaded files to a safe subset, falling
back to generic 'application/octet-stream' for anything else.
This will also protect against non-AP payloads as e.g. used in
past frontend code injection attacks.
It’s a slight regression in user comfort, if say PDFs are uploaded,
but this trade-off seems fairly acceptable.
(Note, just excluding our own custom types would offer no protection
against non-AP payloads and bear a (perhaps small) risk of a silent
regression should MIME ever decide to add a canonical extension for
ActivityPub objects)
Now, one might expect there to be other defence mechanisms
besides Content-Type preventing counterfeits from being accepted,
like e.g. validation of the queried URL and AP ID matching.
Inserting a self-reference into our uploads is hard, but unfortunately
*oma does not verify the id in such a way and happily accepts _anything_
from the same domain (without even considering redirects).
E.g. Sharkey (and possibly other *keys) seem to attempt to guard
against this by immediately refetching the object from its ID, but
this is easily circumvented by just uploading two payloads with the
ID of one linking to the other.
Unfortunately *oma is thus _both_ a vector for spoofing and
vulnerable to those spoof payloads, resulting in an easy way
to impersonate our users.
Similar flaws exists for emoji and media proxy.
Subsequent commits will fix this by rigorously sanitising
content types in more areas, hardening our checks, improving
the default config and discouraging insecure config options.
The default refresh interval of 1 day is woefully inadequate here;
users expect to be able to add the alias to their new account and
press the move button on their old account and have it work.
This allows callers to specify a maximum age before a refetch is
triggered. We set that to 5s for the move code, as a nice compromise
between Making Things Work and ensuring that this can't be used
to hammer a remote server